# Innovation in Energy Storage How Ontario can Attract Investment







### **David Teichroeb**

Business Development, Alternative & Emerging Technology Distributed Energy Storage Workshop – Nov 27, 2012

## Enbridge's Conventional & Alternative Energy Footprint





- Employ 10,000 in Canada & U.S.
- Largest liquid pipeline operation
- Natural gas transmission and Canada's largest gas distributor
- Electricity transmission
  - ~ \$ 3 Billion in Green and Alternative energy
    - Includes fuel cells, geothermal power, run of river hydro, heat to power, etc.
    - More than 1000 MW of wind and solar assets operating or under construction
    - Pathfinding Investments include Hydrogenics for electricity storage & Morgan Solar for next-generation CPV

## **Storage Integrates Generation and Load**



#### **Does Ontario Need Electricity Storage?**



Original Source/Image: OPA / IEOS; Ontario's Integrated Power System Plan, Discussion Paper 5: Transmission, Nov 13, 2006

Need will be derived from "Value"

Value will be influenced by "Policy", "Market Design" and "Contract Structure"

## Innovating for Smarter Energy Grids Energy Exchanges Between Silos



#### **Energy-Use Composition**



- Today we think in Silos
- Focus on Smart "electricity" grid limits benefits
- Majority of focus is on small part of energy pie
- "Energy" Storage offers operational, economic & environmental flexibility
- Society and the economy benefit by extracting more value from existing assets
- New energy conversions are key to unlocking value in energy infrastructure

## Storage Potential; Multiple Benefits & Beneficiaries



#### **Technical / Market Benefits**

- Time Shift Arbitrage
- Streamline renewable integration
- Deferred T&D Investment
- Improved capacity factor for all generation = lower costs
- New grid stabilization tools and services (i.e. regulation, etc.)
- Reduced emissions, renewable energy credits, etc.
- Improve social license to renew energy infrastructure

#### **Beneficiaries / Stakeholders**

- Renewable Energy Developers
- Base load generation, like nuclear operators
- Energy transmission and distribution companies
- Environmental policy
- Independent electricity system operators
- Consumer, regulatory and community interests

#### Storage Can be the New Provincial Inter-Tie



- Today, grid management tools include power exports
- Storage, in aggregate, could be considered an new intertie option
  - Distributed
  - Scalable
  - Incremental
- Exports to in-province storage assets could:
  - Retain environmental attributes of power
  - Reduce or eliminate curtailment/waste of renewable and non-emitting nuclear



Original Source/Image: OPA / IEOS; Ontario's Integrated Power System Plan, Discussion Paper 5: Transmission, Nov 13, 2006

### **Diverse - No Single Storage Solution**



- Bulk storage solutions can range from MWh to TWh of energy
- Seasonal storage possible with hydrogen or substitute natural gas



## Power to Gas; Seasonal Electricity Storage



Off-Peak electricity to hydrogen with electrolysis of water



PEM Electrolysis

Blending of hydrogen with methane in gas grid

Blended gas in cavern or pipeline



**Cavern Storage** 

Blended gas to electricity at peak time / peak season



Natural Gas Network



Renewable Fuel to CCGT & Gas-Fired Distributed Generation

## **Smart Energy Grids Share Infrastructure**



More flexible planning for energy supply & transmission

Less NIMBY pressure on energy infrastructure



## Distributed Storage with Transmission





Illustration of Extra-High-Pressure Gas Distribution System in Greater Toronto Area

- Pipelines are large distributed storage
  - Power to gas 85% to 90% efficient
  - Electrolysers are incremental, at 1-100 MW per site
- Over 275 bcf of gas storage and > 75,000 kM of gas pipelines
- Distributed inter-tie with electricity system
- On energy equivalency basis, Enbridge peak day exceeds 40,000MW

## **Storage Contracting Challenges Single Bill; but Many Influencing Factors**



Power-to-Gas illustrates why storage contract design is a challenge; benefits are many, and spread over wide group of stakeholders

## Milliseconds to Minutes

Frequency Regulation

Source: Brian Seal (EPRI)

- Fast Acting Storage
- Alternative Supply via Dispatchable Load Control

#### Hours



Gas Dispatch With Renewable Fuel



#### Daily



#### Maneuver Nuclear



#### Congestion Relief



## Weeks to Seasonal

Underground Storage



(>80 TWh)

**Emission Credits** 

< GHG

#### Load-Following Renewables





#### Improving Levelized Cost of Electricity (LCOE)



#### LCOE > if generation is curtailed for reliability or market conditions

- System storage can have positive effect on Levelized Cost of Electricity (LCOE)
- Additional improvements with gas-fired power plants using Power-to-Gas

Anticipate economics / cost for CCGT using renewable fuel





## Define the Job are We Trying To Do



System integration of storage is a pyramid

 As upper level of pyramid fills surplus energy can still be optimized by the subsequent storage solutions with scale

Cost



## Why Scale and Efficiency Matter; But in Different Applications



High efficiency storage is suitable for energy balancing (e.g. integration renewables on distribution feeders, etc.)

Lower cost, distributed, seasonal storage (GWh and TWh) is well-aligned with overall system optimization

**Energy must be captured before efficiency matters** 

Ontario is likely to benefit from seasonal storage that has unlimited scale to store meaningful energy volumes

- IESO reporting for 2011
  - Exports 12.9 TWh
  - Imports 3.9 TWh
  - Net 9.0 TWh Exported
- Example 1 (higher-efficiency storage)
  - 500 MW with 10 hours of storage
  - 5 day, 50 week profile
  - 75% round trip efficiency
  - 937 GWh /year
- Example 2 (seasonal storage)
  - 500 MW 10hours of storage
  - 5 day, 50 week profile + 46 incremental hours each weekend
  - 48% round trip efficiency as green power (1,152 GWh / year)
  - 81 % round trip efficiency as green heat (1,944 GWh / year)

## Seeking Value - Balance Scale & Efficiency



## To understand value we must first define the challenges or objectives – then set policy and market rules

Example – Are we striving for maximum GHG reductions by optimizing Ontario's off-peak electricity exports?

#### **Illustrative Scenario**

- 500 MW higher-efficiency storage
- Annual energy harvest ~ 0.94 TWh
- 500 MW seasonal storage (output as green electricity)
  - Annual energy harvest ~ 1.15 TWh
  - Total of 2.09 TWh of non-emitting energy

Total harvest has potential to optimize 16.2 % of Ontario's 12.9 TWh of annual energy exports

### **Establish New Markets for Green Energy**



## Alternative method for GHG reductions by optimizing Ontario's off-peak electricity exports?

**Illustrative Scenario 2** 

- 500 MW higher-efficiency storage
- Annual energy harvest ~ 0.94 TWh
- 500 MW seasonal storage (output as green heat)
  - Annual energy harvest ~ 1.94 TWh
  - Total of 2.88 TWh of non-emitting energy

Total harvest has potential to optimize 22.3 % of Ontario's 12.9 TWh of annual energy exports, and at a lower cost to Ontario energy consumers

Many alternative scenarios exist in which energy storage has potential value; but, policy and market design matters!

#### A Few Realities





- Base load supply can exceed off-peak demand
- Long-Term Energy Plan with > 6000 MW of new intermittent supply by 2018
- Electricity exports only one tool to manage surplus conditions
- Nuclear maneuvering, spilling hydro and curtailing wind technically viable - but wasteful
  - Lost resource / opportunity
- Inefficiencies with system integration reflected in "Global Adjustment"

### **Barriers to Storage Investments**



#### **General Market Barriers**

- Investors in storage assets are investing:
  - Capital \$\$
  - Operations \$\$
  - Managed operational / market risk
- In an mature market, storage revenues include:
  - Energy sales; Arbitrage \$\$
  - Some ancillary services (e.g. regulation, etc.)
  - Other??
- How does one monetize:
  - T&D deferral, emission credits, etc.

#### **Barriers Unique to Ontario**

- Hybrid market heavily weighted to "Contracted Generation" with CES, RES, FIT and Bruce agreements
  - How does storage derive value in market with contracted supply?
- Global Adjustment (GA) and other tariff or uplift costs
  - GA not levied on exports
  - Ont. Regulation 429/04 and adjustment of GA for consumers > 5 MW (Class A customers)
  - GA on net-operations still an uneven playing field; <u>Skews</u>
     <u>Value</u>

## **Setting Ontario's Competitive Advantage**



#### Storage a service provider to system-at-large

- Ensure storage providers are not penalized
  - 1. Acknowledge hybrid market when considering market design for storage
    - Market lacks on-peak/off-peak delta
    - Value of storage supplies measured against contracted generation
      - E.g. costs below FIT pricing might be viewed as offering higher-value
  - Global Adjustment could have perverse affect on investment decisions
    - Storage and exports require similar treatment, or investment signal will align with out-of-province storage assets

#### Hurdle

Storage delivers systemwide benefits with the
potential for compelling
value in totality; however,
many of these benefits
accrue to multiple
stakeholders and
consumers without direct
financial support to
investors in storage assets

## **Conceptual Contracting Options for Storage**



- Today, <u>Accessible</u> market revenues not sufficient to drive investment in storage
  - Total life-cycle benefits may meet consumer benefit test
- When Ontario lacked clean generation capacity it established a Top-Up-Payment
  - Clean Energy Supply (CES) agreements use a Contract for Differences (CfD)
  - Ontario has expertise with CES agreements
- CfD Structure one option for stimulating storage investments
  - Investors negotiate a Net Revenue Requirement (NRR)
  - Monthly Revenue > NRR = Payment to Consumers
  - Monthly Revenue < NRR = Top-Up-Payment to Investor</p>
  - Flexible contract structure fair when future revenues change
    - E.g. market pricing of carbon emissions, etc.

## **Pilot Projects verses Demonstrations**



#### Demonstration Projects:

- Short operating window
- Validate technology works
- If contract support does not exist no path forward if successful
- Usually one-off (pre-commercial)

#### Incremental Pilot Projects:

- Pilot projects can include late-stage demonstrations
- Supported with pilot-contracts to learn about markets and technology
- If industry makes technology work it has right to long-term operation
- No promise to build future projects under same contract conditions
- Incentive for industry to improves technology and reduce costs



Image: Enbridge 2.2 MW Hybrid FuelCell demonstration of cleanest, most efficient gas power plant, Toronto, Ont.



#### **Does Ontario Need Electricity Storage?**

"Value" can be identified through early storage pilots – learn by doing

"Policy", "Market Design" and "Contract Structure" can be tested on pilot projects

To accelerate learning, we need early pilot projects – *Today!* 

By learning we will understand what Ontario's needs are, and how best to meet these needs in the future

## Recommendations & Conclusions



# Ontario has an immediate opportunity to advance several pilot storage projects

- We should empower Ontario's planning and operating authorities to establish learning pilots (1-10 MW projects)
- Seek to understand how system-wide storage can serve as relief valve for renewable and non-emitting electricity supplies
- Planning and regulatory bodies should adopt a Smart-Energy-Grid approach - breakdown silos that lessen consumer benefits
- Prioritize infrastructure investments to storage if quantifiable benefits can be identified, demonstrated and validated:
  - Use of existing infrastructure where relevant
  - Attainment of renewable / non-emitting energy objectives while improving societal & community engagement
  - Establish contracts that monetize total system benefits



david.teichroeb@enbridge.com